An Automatic Generator for a Large Class of Unimodal Discrete Distributions
نویسندگان
چکیده
The automatic Algorithm ARI developed in this paper can generate variates from a large class of unimodal discrete distributions. It is only necessary to know the mode of the distribution and to have a subprogram available that can evaluate the probabilities. In a set up step the algorithm constructs a table mountain shaped hat function. Then rejection inversion, a new variant of the rejection method for discrete distributions that needs only one uniform random number per iteration, is used to sample from the desired distribution. It is shown that the expeceted number of iterations is uniformly bounded for all T-concave discrete distributions. Utilizing a simple squeeze or an auxiliary table of moderate size, which is initialized during generation and not in the set up, Algorithm ARI is fast, at least as fast as the fastest known methods designed for the Poisson, binomial and hypergeometric distributions. The set up time of the algorithm is not aaected by the size of the domain of the distribution and is about ten times longer than the generation of one variate. Compared with the very fast and well known alias and indexed search methods the set up of Algorithm ARI is much faster but the generation time is about two times slower. More important than the speed is the fact that Algorithm ARI is the rst automatic algorithm that can generate samples from discrete distributions with heavy tails.
منابع مشابه
On discrete a-unimodal and a-monotone distributions
Unimodality is one of the building structures of distributions that like skewness, kurtosis and symmetry is visible in the shape of a function. Comparing two different distributions, can be a very difficult task. But if both the distributions are of the same types, for example both are unimodal, for comparison we may just compare the modes, dispersions and skewness. So, the concept of unimodali...
متن کاملMinimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss Function
The problem of estimating the parameter ?, when it is restricted to an interval of the form , in a class of discrete distributions, including Binomial Negative Binomial discrete Weibull and etc., is considered. We give necessary and sufficient conditions for which the Bayes estimator of with respect to a two points boundary supported prior is minimax under squared log error loss function....
متن کاملAutomatic Phase Advancing in a Stand-Alone Switched Reluctance Generator at Different High Speeds for Desired Output Voltage
The switched reluctance motor is a singly excited, doubly salient machine which can be used in generation mode by selecting the proper firing angles of the phases. Due to its robustness, it has the potential and the ability to become one the generators to be used in harsh environment. This paper presents an energy conversion by a Switched Reluctance Generator (SRG) when bifilar converter ci...
متن کاملM-estimators as GMM for Stable Laws Discretizations
This paper is devoted to "Some Discrete Distributions Generated by Standard Stable Densities" (in short, Discrete Stable Densities). The large-sample properties of M-estimators as obtained by the "Generalized Method of Moments" (GMM) are discussed for such distributions. Some corollaries are proposed. Moreover, using the respective results we demonstrate the large-sample pro...
متن کاملOn a New Bimodal Normal Family
The unimodal distributions are frequently used in the theorical statistical studies. But in applied statistics, there are many situations in which the unimodal distributions can not be fitted to the data. For example, the distribution of the data outside the control zone in quality control or outlier observations in linear models and time series may require to be a bimodal. These situations, oc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997